联合学习(FL)被认为是分布式机器学习(ML)最有前途的解决方案之一。在当前的大多数文献中,FL已被研究用于监督的ML任务,其中边缘设备收集标记的数据。然而,在许多应用中,假设存在跨设备标记的数据是不切实际的。为此,我们开发了一种新颖的方法论,合作联合无监督的对比度学习(CF-CL),用于使用未标记的数据集的跨越边缘设备的FL。 CF-CL采用本地设备合作,其中通过设备到设备(D2D)通信在设备之间进行数据交换,以避免由非独立且相同分布式(非I.I.I.I.D。)本地数据集引起的本地模型偏差。 CF-CL引入了针对无监督的FL设置量身定制的推动力智能数据共享机制,在该设置中,每个设备将其本地数据点的子集推向其邻居,作为保留数据点,并从其邻居中提取一组数据点,并通过其进行采样概率重要性抽样技术。我们证明,CF-CL导致(i)跨设备的无监督的潜在空间对齐,(ii)更快的全局收敛,允许较低的全局模型聚合; (iii)在极端非i.i.d中有效。跨设备的数据设置。
translated by 谷歌翻译
联合学习(FL)是分散机器学习的新型框架。由于FL的分散特征,它很容易受到训练程序中的对抗攻击的影响,例如,后门攻击。后门攻击旨在将后门注入机器学习模型中,以便该模型会在测试样本上任意使用一些特定的后门触发器。即使已经引入了一系列FL的后门攻击方法,但也有针对它们进行防御的方法。许多捍卫方法都利用了带有后门的模型的异常特征,或带有后门和常规模型的模型之间的差异。为了绕过这些防御,我们需要减少差异和异常特征。我们发现这种异常的来源是,后门攻击将在中毒数据时直接翻转数据标签。但是,当前对FL后门攻击的研究并不主要集中在减少带有后门和常规模型的模型之间的差异。在本文中,我们提出了对抗性知识蒸馏(ADVKD),一种方法将知识蒸馏与FL中的后门攻击结合在一起。通过知识蒸馏,我们可以减少标签翻转导致模型中的异常特征,因此该模型可以绕过防御措施。与当前方法相比,我们表明ADVKD不仅可以达到更高的攻击成功率,而且还可以在其他方法失败时成功绕过防御。为了进一步探索ADVKD的性能,我们测试参数如何影响不同情况下的ADVKD的性能。根据实验结果,我们总结了如何在不同情况下调整参数以获得更好的性能。我们还使用多种方法可视化不同攻击的效果并解释Advkd的有效性。
translated by 谷歌翻译
本文解决了视频检测问题的视频监视问题。由于异常事件的固有稀有性和异质性,该问题被视为一种正态建模策略,在这种策略中,我们的模型学习以对象为中心的正常模式,而无需在训练过程中看到异常样本。主要贡献在于耦合预处理的对象级动作具有基于余弦的异常估计功能的原型原型,因此通过向基于主流重建的策略引入其他约束来扩展以前的方法。我们的框架利用外观和运动信息来学习对象级别的行为并捕获内存模块中的原型模式。在几个知名数据集上进行的实验证明了我们方法的有效性,因为它在最相关的时空评估指标上优于当前的最新时间。
translated by 谷歌翻译